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Critical Line near the Zero-Density Critical Point of 
the Kosterlitz-Thouless Transition 
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Using low-fugacity expansions, we study the exact behavior of the Kosterlitz- 
Thouless critical line near the zero-density critical point. We show that the 
critical temperature deviates from its zero-density value by a term proportional 
to the square root of the density. 
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The two-dimensional Coulomb gas is a charge-symmetric two-component 
plasma with charges e and - e  which interact through the logarithmic 
potential - I n ( r / L ) ,  where r is the distance between the particles and L is 
an arbitrary length that determines the zero of the potential. This system 
is of  great interest, since it is the archetype of a universality class of 2D 
transitions induced by a condensation of topological excitations (such as 
defects in quasicrystals or vortices in 4He films). Indeed, because of the 
long range of the confining logarithmic interaction, opposite charges form 
neutral pairs at sufficiently low temperatures and low densities, and the 
system undergoes the well-known Kosterli tz-Thouless (KT)  transition. ~} 
(see ref. 2 for a rigorous proof). On the other hand, the Coulomb gas is 
interesting in itself; in particular, when the density becomes large enough, 
the KT transition, which is of infinite order, is expected to bifurcate into 
a first-order transition between a conductive liquid and an insulating gas. 
This transition has been studied by numerical simulations ~31 and 
approximate theories. r Of  course, when the dimensionless coupling 
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constant l'=e2/(kn T) is larger than 2, a short-range repulsive potential 
must be introduced in order to prevent the collapse of opposite charges. In 
the following, we consider a system of charged hard disks with diameter a 
and we fix L = a. 

The point of this short communication is to emphasize that, in the 
phase diagram in temperature versus density, the tangent to the critical line 
T,.(p) is vertical at the zero-density critical point k~ T,(p = 0 ) =  1/4 [ T,.(p) 
is the critical temperature when the total density of particles is equal to p]. 
This property does not appear in the usual approaches of either the 
iterated mean-field model introduced by Kosterlitz and Thouless or the 
renormalization group applied to the sine-Gordon field theory, which is 
equivalent to the Coulomb gas. 16~ In all these approaches, the KT critical 
line is given in terms of the parameters T and z, where z is the dimen- 
sionless fugacity of both species of charges. It reads 

e 2 

F,.=kl~T,.=4+8nz +o(z) (1) 

On the other hand, our microscopic approach based on first principles and 
developed in ref. 7 allows us to relate the dimensionless fugacity to the 
density of particles. Our result for T,.(p) has been observed in recent 
approximate theories.-' However, there are still critical lines in the figures 
found in the literature that ignore this property. We mention that, in fact, 
simulations are more adapted to the finite-density regime than to the zero- 
density limit of the original KT transition. 

In our microscopic approach, we start from the low-fugacity expan- 
sions of the equilibrium quantities. The Mayer z-graphs are convergent 
when F is greater than 4. ~s~ This allows us to study the behavior of the 
quantities of interest in the dielectric phase when both - and ( F - 4 )  are 
small parameters. In particular, the large-distance behavior of the internal 

= p T _  a n d p r  =pr_ is controlled by thefluc- particle correlations p r+ + + + 
tuations of dipolar potentials, and we find that p r+ + and p+_r decay as  1/i .4 
(for a rigorous proof see ref. 9) with the same coefficient. Subsequently, the 
internal charge correlation, defined as 

C(r) = e2{2[pr+ +(r) - pT+ _(r)] + p6(r)} (2) 

falls off faster than r r p + + and p + . We have shown that the leading term 
in the large-distance behavior of the internal charge correlation C(r) decays 
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as 1/r r/':, where e is the dielectric constant given by the linear response 
formula, 

1 _  1 + dr r2C(r) (3) 

Each term of order z 2'' in the z-expansion of C(r)  contributes a term of 
order z [ z / ( F - 4 ) ]  2" ~ to 1/e. Thus all these contributions must be resummed 
near the zero-density critical point. This mechanism arises from collective 
effects which characterize critical points. In our analysis, the signal of the KT 
transition appears as the nonanalyticity of 1/e as a function of the parameter 
z / ( F - 4 ) :  the critical line is determined by the radius of convergence of the 
above series, and it reads F/e = 4, as conjectured in the literature. Notice that, 
at the KT transition, 1/e jumps from a finite value in the dielectric phase 
(where the screening is only partial) to the value zero in the conductive phase 
(where the screening is perfect). 

In the present paper, we investigate the low-fugacity expansion of the 
particle densities, 

" f dr + O(z 4) (4) p + = p -  a4 .>~ 

Now, all the Mayer graphs remain finite when F - - , 4  +. Indeed, the KT 
transition is of infinite order, and the thermodynamic quantities are 
continuous as well as all their derivatives when F varies. In contrast to the 
case of l/e, no resummations are needed. As a consequence, the total 
density of particles p = p + + p_  behaves like 

2zr7. 2 
p ~  tx 2 (5) 

in the regime of interest. Thus the Eq. (1) of the critical line can be 
rewritten as 

kB T,. 1 zc '/2 
e 2 4 2 3`2 [po.2]1/2 (6) 

where all terms of order higher than p ~/2 have been dropped. Consequently, 
the tangent to the critical line at the zero-density critical point is vertical. 

In Fig. 1, we have drawn the curve extrapolated from the exact 
low-density form (6). This curve should represent the critical line quite 
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Fig. 1. Phase diagram in the plane (pa2, k13T/e2). Dashed curve: the KT critical line 
extrapolated from the exact low-density behavior (6). Solid curve: the KT critical line and the 
liquid-gas coexistence curve computed by Fisher et al. (see footnote 2). Hatched zone: the 
liquid-gas coexistence region. Circle: the tricritical point (p ta  =~- 0.00456, k ,  T,/e a~- 0,2138 I. 

accurately in the vicinity of  the zero-density critical point. We also show 
the phase diagram recently computed by Fisher e t  al.  (see footnote 2) for 
models which take into account finite-density effects. Notice that their 
tricritical point (p,, T,) is close to our extrapolated curve. The expression 
(6) indeed gives T, = 0.2077 for p , a  2 = 0.00456, while T, = 0.2138. 
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